Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[1-(2-Oxidobenzylidene)-4-phenylthiosemicarbazonato- $\kappa^3 S, N^1, O$](pyridine- κN)nickel(II)

Zi-Ying Cao,^a Zhao-Peng Deng^b and Shan Gao^{b*}

^aSchool of Chemical Engineering, Mudanjiang University, Mudanjiang 157011, People's Republic of China, and ^bLaboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Received 18 June 2007; accepted 18 June 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.011 Å; R factor = 0.037; wR factor = 0.089; data-to-parameter ratio = 15.5.

In the title complex, $[Ni(C_{14}H_{11}N_3OS)(C_5H_5N)]$, the Ni^{II} atom is *N*,*O*,*S*-chelated by the deprotonated salicylaldimine-4phenylthiosemicarbazide dianion and is also coordinated by a pyridine molecule, the coordinating atoms giving rise to a square-planar geometry for the Ni atom. The asymmetric unit contains two molecules. The mononuclear units are linked into a chain structure along the *b* axis by intermolecular N-H···S hydrogen bonds and weak π - π stacking interactions between the pyridine rings [centroid–centroid = 3.758 (3) Å].

Related literature

For other metal derivatives of *N*-salicylaldimine-4-phenylthiosemicarbazide, see: Milanesio *et al.* (2000) for vanadium, Prabhakaran *et al.* (2005) and Soriano-García *et al.* (1985) for nickel, Naik *et al.* (2003) and Thomas *et al.* (2004) for copper, Deng *et al.* (2007) for zinc.

Experimental

Crystal data

 $[Ni(C_{14}H_{11}N_3OS)(C_5H_5N)]$ $M_r = 407.13$ Monoclinic, Pc a = 5.7294 (11) Å b = 12.924 (3) Å c = 23.683 (5) Å $\beta = 95.64$ (3)°

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.669, T_{\rm max} = 0.816$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.089$ S = 1.067370 reflections 475 parameters 4 restraints $V = 1745.2 \text{ (6) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.25 \text{ mm}^{-1}$ T = 295 (2) K $0.35 \times 0.24 \times 0.17 \text{ mm}$

16815 measured reflections 7370 independent reflections 4892 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.57 \ {\rm e} \ {\rm \AA}^{-3}$
Absolute structure: Flack (1983),
with 3366 Friedel pairs
Flack parameter: 0.029 (17)

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	1.849 (4)	Ni2-N5	1.845 (4)
Ni1-O1	1.859 (4)	Ni2-O2	1.863 (4)
Ni1-N4	1.909 (4)	Ni2-N8	1.911 (4)
Ni1-S1	2.1547 (15)	Ni2-S2	2.1507 (15)
N1-Ni1-O1	95.77 (17)	N5-Ni2-O2	95.19 (17)
N1-Ni1-N4	177.51 (19)	N5-Ni2-N8	178.16 (19)
O1-Ni1-N4	85.93 (17)	O2-Ni2-N8	85.50 (17)
N1-Ni1-S1	87.31 (14)	N5-Ni2-S2	87.57 (13)
O1-Ni1-S1	175.83 (13)	O2-Ni2-S2	176.29 (13)
N4-Ni1-S1	91.08 (13)	N8-Ni2-S2	91.81 (14)

Table 2	-	
Hydrogen-bond geometry	(Å,	0

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3 - H3N \cdots S2^{i}$	0.86(4)	2.77 (4)	3.605 (4)	163 (5)
$N7 - H7N \cdots S1^{ii}$	0.86(4)	2.80 (2)	3.627 (4)	161 (5)

Symmetry codes: (i) x - 1, y + 1, z; (ii) x + 1, y - 1, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (No. 1054 G036), the Scientific Research Fund of Heilongjiang Provincial Education Department (No. 11515140), Heilongjiang University and Mudanjiang University for supporting this work. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2284).

References

- Deng, Z.-P., Gao, S. & Ng, S. W. (2007). Acta Cryst. E63, m1650.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
- Milanesio, M., Viterbo, D., Hernández, R. P., Rodriguez, J. D., Ramirez-Ortiz, J. & Valdés-Martinez, J. (2000). *Inorg. Chim. Acta*, **306**, 125–129.

- Naik, A. D., Reddy, P. A. N., Nethaji, M. & Chakravarty, A. R. (2003). Inorg. Chim. Acta, 349, 149–158.
- Prabhakaran, R., Karvembu, R., Hashimoto, T., Shimizu, K. & Natarajan, J. (2005). Inorg. Chim. Acta, 358, 2093–2096.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Soriano-García, M., Toscano, R. A., Valdés-Martínez, J. & Fernández-G., J. M. (1985). Acta Cryst. C41, 498–500.
- Thomas, A. M., Naik, A. D., Nethaji, M. & Chakravarty, A. R. (2004). Inorg. Chim. Acta, 357, 2315–2323.

Acta Cryst. (2007). E63, m1961-m1962 [doi:10.1107/S1600536807029698]

[1-(2-Oxidobenzylidene)-4-phenylthiosemicarbazonato- $\kappa^3 S, N^1, O$](pyridine- κN)nickel(II)

Z.-Y. Cao, Z.-P. Deng and S. Gao

Comment

Up to now, a number of metal complexes of *N*-salicyldimine-4-phenylthiosemicarbazide have been synthesized, and most of them are mononuclear (Milanesio *et al.*, 2000; Prabhakaran *et al.*, 2005; Soriano-García *et al.*, 1985; Naik *et al.*, 2003; Thomas *et al.*, 2004). Recently, a dinuclear complex has been reported (Deng *et al.*, 2007). In these complexs, the hydrazone ligand chelates in a terdentate manner. In the title mononuclear complex, [Ni(C₁₄H₁₁N₃OS)(C₅H₅N)], the ligand binds in

a similar mode. As shown in Fig. 1, the Ni^{II} atom is N,*O*,*S*-chelated by deprotonated salicylaldimine-4-phenylthiosemicarbazide dianion. It is also coordinated by pyridine molecule, and a square planar geometry results. The mononuclear units are linked into a chain structure along *b* axis by N—H···S intermolecular hydrogen bonds and weak π - π stacking interactions between the pyridine rings [centroid···centroid = 3.758 (3) Å] (Fig. 2).

Experimental

N-salicldimine-4-phenylthiosemicarbazone ligand was synthesized by condensing salicylaldehyde with 4-phenylthiosemicarbazide in ethonal for 2.5 h, and the hydrazone ligand was isolated as yellow crystals from the resulting solution. The title compound was prepared by the addition of nickel(II) acetate tetrahydrate (1 mmol) and pyridine (1 ml) to a methanol solution (15 ml) of the ligand (1 mmol). The mixture was refluxed for 1 h, cooled slowly to room temperature and filtered. Red-brown crystals were isolated from the solution after three days. Analysis calculated for $C_{19}H_{16}N_4OSNi$: C 56.06, H 3.96, N 13.76%; found: C 56.01, H 3.94, N 13.79%.

Refinement

C-bound H atoms were placed in calculated positions, with C—H = 0.93 and $U_{iso}(H) = 1.2U_{eq}(C)$, and were included in the refinement in the riding-model approximation. H atoms on the N atoms were located in Fourier difference maps and refined with the restraints N—H = 0.86 (1) Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$. The Flack parameter was refined from 3366 Friedel paris.

Figures

Fig. 1. Figure 1. A view of complex (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. Figure 2. The chain structure of (I), viewed along the *b* axis. Green dashed lines indicate N–H···S hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. Cg1 and Cg2 represent the centroids of adjacent pyridine rings, as defined in the comment.

[1-(2-Oxidobenzylidene)-4-phenylthiosemicarbazonato- $\kappa^3 S$, N^1 , O] (pyridine- κN)nickel(II)

 $F_{000} = 840$

 $D_{\rm x} = 1.550 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 11939 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.0 - 27.5^{\circ}$

 $\mu = 1.25 \text{ mm}^{-1}$

T = 295 (2) K

Prism, colorless

 $0.35 \times 0.24 \times 0.17 \text{ mm}$

Crystal data

[Ni(C₁₄H₁₁N₃OS)(C₅H₅N)] $M_r = 407.13$ Monoclinic, *Pc* Hall symbol: P -2yc a = 5.7294 (11) Å b = 12.924 (3) Å c = 23.683 (5) Å $\beta = 95.64$ (3)° V = 1745.2 (6) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer	7370 independent reflections
Radiation source: fine-focus sealed tube	4892 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -6 \rightarrow 7$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -16 \rightarrow 16$
$T_{\min} = 0.669, \ T_{\max} = 0.816$	$l = -30 \rightarrow 30$
16815 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.022P)^2 + 0.9787P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.089$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.60 \text{ e } \text{\AA}^{-3}$
7370 reflections	$\Delta \rho_{min} = -0.57 \text{ e } \text{\AA}^{-3}$
475 parameters	Extinction correction: none
4 restraints	Absolute structure: Flack (1983), with 3366 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.029 (17)

Secondary atom site location: difference Fourier map

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.42415 (9)	0.92246 (4)	0.75792 (3)	0.03968 (16)
Ni2	0.30864 (10)	0.32924 (4)	0.63710 (3)	0.03927 (16)
S1	0.1296 (2)	1.01932 (11)	0.72961 (6)	0.0479 (4)
S2	0.6011 (3)	0.23095 (11)	0.66440 (6)	0.0486 (4)
01	0.6638 (8)	0.8306 (2)	0.78157 (17)	0.0491 (11)
02	0.0683 (7)	0.4217 (2)	0.61431 (17)	0.0479 (11)
N1	0.5015 (8)	1.0198 (3)	0.81387 (19)	0.0399 (10)
N2	0.3641 (8)	1.1071 (3)	0.8204 (2)	0.0444 (11)
N3	0.0183 (8)	1.1876 (4)	0.78621 (19)	0.0464 (11)
H3N	-0.096 (6)	1.185 (4)	0.7596 (16)	0.056*
N4	0.3432 (8)	0.8267 (3)	0.69777 (19)	0.0372 (11)
N5	0.2299 (7)	0.2349 (3)	0.57989 (19)	0.0381 (10)
N6	0.3675 (8)	0.1466 (3)	0.57220 (19)	0.0451 (11)
N7	0.7084 (8)	0.0632 (4)	0.60734 (18)	0.0464 (11)
H7N	0.825 (6)	0.066 (4)	0.6330 (17)	0.056*
N8	0.3873 (8)	0.4238 (3)	0.69807 (19)	0.0380 (11)
C1	0.8281 (16)	0.8445 (6)	0.8244 (4)	0.0414 (19)
C2	0.995 (2)	0.7658 (7)	0.8368 (4)	0.057 (3)
H2	0.9801	0.7038	0.8169	0.069*
C3	1.176 (2)	0.7786 (8)	0.8771 (4)	0.062 (3)
H3	1.2856	0.7256	0.8826	0.075*
C4	1.2076 (16)	0.8661 (7)	0.9108 (4)	0.054 (2)
H4	1.3329	0.8726	0.9387	0.065*
C5	1.0409 (13)	0.9432 (6)	0.9004 (3)	0.053 (2)
Н5	1.0548	1.0034	0.9220	0.064*
C6	0.8511 (12)	0.9335 (5)	0.8582 (3)	0.0424 (16)
C7	0.6850 (9)	1.0158 (4)	0.8509 (2)	0.0404 (12)
H7	0.7103	1.0723	0.8750	0.049*
C8	0.1818 (9)	1.1111 (4)	0.7833 (2)	0.0390 (12)
C9	0.0002 (17)	1.2640 (6)	0.8284 (4)	0.041 (2)
C10	-0.2062 (17)	1.3186 (6)	0.8283 (5)	0.051 (2)
H10	-0.3307	1.3035	0.8014	0.062*
C11	-0.2306 (14)	1.3955 (5)	0.8679 (3)	0.0557 (19)
H11	-0.3713	1.4315	0.8670	0.067*
C12	-0.0527 (15)	1.4192 (6)	0.9080 (4)	0.057 (2)
H12	-0.0701	1.4715	0.9342	0.068*
C13	0.1552 (17)	1.3640 (7)	0.9090 (5)	0.061 (3)
H13	0.2778	1.3783	0.9366	0.074*
C14	0.1808 (17)	1.2872 (6)	0.8688 (4)	0.047 (2)
H14	0.3217	1.2513	0.8694	0.056*
C15	0.4957 (11)	0.8095 (4)	0.6593 (3)	0.0456 (14)
H15	0.6289	0.8508	0.6602	0.055*
C16	0.4640 (11)	0.7341 (4)	0.6189 (2)	0.0508 (15)
H16	0.5721	0.7253	0.5925	0.061*
C17	0.2700 (11)	0.6712 (5)	0.6180 (2)	0.0537 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H17	0.2463	0.6180	0.5916	0.064*
C18	0.1127 (10)	0.6887 (4)	0.6568 (2)	0.0484 (14)
H18	-0.0200	0.6473	0.6571	0.058*
C19	0.1518 (10)	0.7674 (4)	0.6951 (2)	0.0459 (13)
H19	0.0405	0.7802	0.7202	0.055*
C20	-0.0943 (17)	0.4123 (6)	0.5718 (4)	0.0416 (19)
C21	-0.2597 (18)	0.4920 (7)	0.5611 (4)	0.050(2)
H21	-0.2470	0.5516	0.5832	0.059*
C22	-0.4421 (19)	0.4834 (7)	0.5179 (4)	0.059 (3)
H22	-0.5520	0.5361	0.5115	0.071*
C23	-0.4570 (17)	0.3963 (8)	0.4851 (5)	0.061 (3)
H23	-0.5804	0.3898	0.4567	0.074*
C24	-0.2986 (14)	0.3196 (6)	0.4926 (3)	0.052 (2)
H24	-0.3117	0.2624	0.4687	0.062*
C25	-0.1122 (12)	0.3246 (5)	0.5364 (3)	0.0417 (17)
C26	0.0501 (9)	0.2410 (4)	0.5421 (2)	0.0439 (13)
H26	0.0254	0.1862	0.5168	0.053*
C27	0.5462 (10)	0.1413 (4)	0.6101 (2)	0.0403 (13)
C28	0.7199 (17)	-0.0134 (6)	0.5662 (4)	0.0381 (19)
C29	0.9279 (18)	-0.0694 (6)	0.5667 (4)	0.047 (2)
H29	1.0531	-0.0532	0.5933	0.057*
C30	0.9513 (14)	-0.1482 (6)	0.5287 (3)	0.057 (2)
H30	1.0917	-0.1845	0.5298	0.069*
C31	0.7675 (15)	-0.1739 (6)	0.4886 (4)	0.052 (2)
H31	0.7825	-0.2272	0.4628	0.062*
C32	0.5649 (16)	-0.1191 (6)	0.4881 (4)	0.051 (2)
H32	0.4408	-0.1366	0.4616	0.061*
C33	0.5341 (17)	-0.0390 (6)	0.5250 (4)	0.045 (2)
H33	0.3936	-0.0026	0.5229	0.054*
C34	0.5814 (9)	0.4822 (4)	0.7015 (2)	0.0435 (13)
H34	0.6953	0.4691	0.6770	0.052*
C35	0.6158 (11)	0.5614 (5)	0.7404 (2)	0.0534 (15)
H35	0.7476	0.6035	0.7407	0.064*
C36	0.4544 (11)	0.5779 (5)	0.7788 (2)	0.0548 (14)
H36	0.4754	0.6311	0.8053	0.066*
C37	0.2619 (11)	0.5145 (4)	0.7774 (2)	0.0509 (15)
H37	0.1531	0.5223	0.8038	0.061*
C38	0.2330 (11)	0.4391 (4)	0.7362 (2)	0.0443 (14)
H38	0.1008	0.3971	0.7349	0.053*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0444 (4)	0.0343 (3)	0.0392 (4)	0.0006 (3)	-0.0018 (3)	-0.0047 (3)
Ni2	0.0437 (4)	0.0347 (3)	0.0380 (4)	0.0012 (3)	-0.0026 (3)	-0.0043 (3)
S1	0.0541 (9)	0.0433 (7)	0.0433 (8)	0.0063 (7)	-0.0103 (7)	-0.0090 (6)
S2	0.0550 (9)	0.0426 (7)	0.0452 (9)	0.0087 (7)	-0.0105 (7)	-0.0087 (7)
01	0.057 (3)	0.043 (2)	0.044 (3)	0.0073 (17)	-0.007 (2)	-0.0095 (16)

O2	0.053 (3)	0.040 (2)	0.048 (3)	0.0083 (17)	-0.010 (2)	-0.0123 (16)
N1	0.043 (3)	0.036 (2)	0.041 (3)	0.002 (2)	0.000 (2)	0.000 (2)
N2	0.044 (3)	0.033 (2)	0.054 (3)	0.011 (2)	-0.009 (2)	-0.007 (2)
N3	0.048 (3)	0.043 (3)	0.045 (3)	0.009 (2)	-0.012 (2)	-0.005 (2)
N4	0.038 (3)	0.034 (2)	0.039 (3)	0.0015 (19)	0.001 (2)	-0.0015 (19)
N5	0.038 (3)	0.031 (2)	0.044 (3)	0.0033 (19)	-0.001 (2)	-0.0020 (19)
N6	0.049 (3)	0.037 (2)	0.048 (3)	0.008 (2)	-0.001 (2)	-0.008 (2)
N7	0.046 (3)	0.046 (3)	0.043 (3)	0.009 (2)	-0.014 (2)	-0.009 (2)
N8	0.043 (3)	0.035 (2)	0.036 (3)	0.002 (2)	0.002 (2)	-0.0005 (19)
C1	0.039 (4)	0.044 (4)	0.041 (4)	0.009 (3)	-0.001 (3)	0.009 (3)
C2	0.075 (7)	0.051 (5)	0.044 (5)	0.019 (4)	-0.004 (4)	-0.013 (4)
C3	0.072 (6)	0.068 (5)	0.045 (5)	0.034 (4)	-0.004 (4)	0.005 (4)
C4	0.047 (4)	0.071 (5)	0.042 (5)	0.014 (4)	-0.008(4)	-0.006 (4)
C5	0.048 (4)	0.060 (4)	0.049 (4)	0.004 (3)	-0.009 (4)	-0.005 (3)
C6	0.044 (4)	0.042 (3)	0.040 (4)	0.002 (3)	0.001 (3)	-0.003 (3)
C7	0.038 (3)	0.041 (3)	0.041 (3)	0.000 (2)	-0.005 (2)	-0.007 (2)
C8	0.045 (3)	0.032 (3)	0.039 (3)	0.006 (2)	-0.002 (2)	0.003 (2)
С9	0.049 (5)	0.036 (4)	0.036 (4)	-0.001 (3)	0.001 (3)	0.000 (3)
C10	0.037 (4)	0.053 (4)	0.061 (5)	0.012 (3)	-0.007 (4)	0.003 (4)
C11	0.053 (5)	0.056 (4)	0.060 (5)	0.015 (4)	0.011 (4)	0.003 (4)
C12	0.062 (6)	0.052 (4)	0.059 (5)	0.007 (4)	0.017 (4)	-0.008 (3)
C13	0.063 (6)	0.062 (5)	0.058 (6)	-0.005 (4)	0.002 (5)	-0.022 (4)
C14	0.046 (4)	0.046 (4)	0.047 (5)	0.013 (3)	-0.002 (3)	-0.005 (3)
C15	0.043 (4)	0.045 (3)	0.049 (4)	0.002 (3)	0.005 (3)	0.003 (3)
C16	0.062 (4)	0.048 (3)	0.042 (3)	0.015 (3)	0.007 (3)	-0.004 (3)
C17	0.068 (4)	0.042 (3)	0.049 (3)	0.006 (3)	-0.007 (3)	-0.008 (3)
C18	0.054 (3)	0.044 (3)	0.047 (3)	-0.010 (3)	0.003 (3)	-0.009 (3)
C19	0.049 (3)	0.046 (3)	0.042 (3)	-0.001 (3)	0.004 (3)	-0.005 (3)
C20	0.054 (5)	0.043 (3)	0.027 (3)	0.000 (3)	0.000 (3)	-0.003 (3)
C21	0.059 (6)	0.045 (4)	0.043 (4)	0.020 (4)	-0.005 (4)	0.000 (3)
C22	0.066 (6)	0.064 (5)	0.045 (5)	0.025 (4)	-0.009(4)	-0.002 (4)
C23	0.052 (4)	0.076 (6)	0.052 (5)	0.018 (4)	-0.018 (4)	-0.009 (4)
C24	0.052 (5)	0.057 (4)	0.044 (4)	0.009 (3)	-0.013 (3)	-0.015 (3)
C25	0.043 (4)	0.043 (3)	0.038 (4)	0.007 (3)	0.001 (3)	0.000 (3)
C26	0.046 (3)	0.040 (3)	0.043 (3)	-0.002 (2)	-0.006 (3)	-0.007 (2)
C27	0.046 (3)	0.036 (3)	0.037 (3)	0.003 (2)	-0.004 (2)	0.000 (2)
C28	0.045 (4)	0.030 (3)	0.040 (4)	0.005 (3)	0.007 (3)	0.006 (3)
C29	0.049 (4)	0.049 (4)	0.044 (4)	0.003 (3)	0.003 (3)	-0.007 (4)
C30	0.056 (5)	0.059 (5)	0.057 (5)	0.020 (4)	0.005 (4)	0.001 (4)
C31	0.070 (6)	0.044 (4)	0.043 (4)	0.010 (3)	0.010 (4)	-0.006 (3)
C32	0.052 (5)	0.054 (5)	0.043 (5)	0.012 (4)	-0.009 (4)	-0.010 (4)
C33	0.037 (4)	0.045 (4)	0.052 (5)	0.002 (3)	-0.004 (3)	-0.008 (4)
C34	0.044 (3)	0.048 (3)	0.038 (3)	-0.003 (3)	0.002 (2)	-0.004 (3)
C35	0.055 (4)	0.053 (4)	0.051 (3)	-0.005 (3)	-0.002 (3)	-0.003 (3)
C36	0.067 (4)	0.044 (3)	0.051 (4)	0.009 (3)	-0.004 (3)	-0.014 (3)
C37	0.057 (4)	0.053 (3)	0.044 (3)	0.008 (3)	0.012 (3)	0.002 (3)
C38	0.045 (4)	0.045 (3)	0.042 (3)	-0.003 (3)	0.000 (3)	0.002 (3)

Geometric parameters (Å, °)

Ni1—N1	1.849 (4)	C12—C13	1.387 (12)
Ni1—O1	1.859 (4)	C12—H12	0.9300
Ni1—N4	1.909 (4)	C13—C14	1.394 (12)
Ni1—S1	2.1547 (15)	С13—Н13	0.9300
Ni2—N5	1.845 (4)	C14—H14	0.9300
Ni2—O2	1.863 (4)	C15—C16	1.366 (8)
Ni2—N8	1.911 (4)	C15—H15	0.9300
Ni2—S2	2.1507 (15)	C16—C17	1.375 (8)
S1—C8	1.744 (5)	C16—H16	0.9300
S2—C27	1.736 (5)	C17—C18	1.367 (8)
O1—C1	1.327 (10)	С17—Н17	0.9300
O2—C20	1.308 (10)	C18—C19	1.367 (7)
N1—C7	1.302 (6)	C18—H18	0.9300
N1—N2	1.393 (6)	С19—Н19	0.9300
N2—C8	1.297 (6)	C20—C21	1.406 (12)
N3—C8	1.368 (7)	C20—C25	1.407 (11)
N3—C9	1.415 (10)	C21—C22	1.392 (11)
N3—H3N	0.86 (4)	C21—H21	0.9300
N4—C19	1.334 (6)	C22—C23	1.366 (13)
N4—C15	1.341 (7)	С22—Н22	0.9300
N5—C26	1.298 (6)	C23—C24	1.343 (12)
N5—N6	1.410 (5)	С23—Н23	0.9300
N6—C27	1.295 (6)	C24—C25	1.415 (10)
N7—C27	1.378 (7)	C24—H24	0.9300
N7—C28	1.397 (10)	C25—C26	1.424 (8)
N7—H7N	0.86 (4)	С26—Н26	0.9300
N8—C38	1.340 (7)	C28—C29	1.393 (13)
N8—C34	1.340 (6)	C28—C33	1.410 (11)
C1—C6	1.400 (11)	C29—C30	1.375 (12)
C1—C2	1.406 (12)	С29—Н29	0.9300
C2—C3	1.348 (12)	C30—C31	1.386 (11)
С2—Н2	0.9300	С30—Н30	0.9300
C3—C4	1.386 (13)	C31—C32	1.359 (12)
С3—Н3	0.9300	C31—H31	0.9300
C4—C5	1.386 (12)	C32—C33	1.377 (12)
C4—H4	0.9300	С32—Н32	0.9300
C5—C6	1.409 (10)	С33—Н33	0.9300
С5—Н5	0.9300	C34—C35	1.379 (7)
C6—C7	1.426 (8)	C34—H34	0.9300
С7—Н7	0.9300	C35—C36	1.376 (8)
C9—C14	1.372 (11)	С35—Н35	0.9300
C9—C10	1.377 (13)	C36—C37	1.371 (8)
C10—C11	1.382 (12)	С36—Н36	0.9300
C10—H10	0.9300	C37—C38	1.378 (8)
C11—C12	1.358 (11)	С37—Н37	0.9300
C11—H11	0.9300	C38—H38	0.9300

N1—Ni1—O1	95.77 (17)	C9—C14—C13	120.6 (10)
N1—Ni1—N4	177.51 (19)	C9—C14—H14	119.7
O1—Ni1—N4	85.93 (17)	C13—C14—H14	119.7
N1—Ni1—S1	87.31 (14)	N4-C15-C16	122.9 (5)
01—Ni1—S1	175.83 (13)	N4—C15—H15	118.5
N4—Ni1—S1	91.08 (13)	C16—C15—H15	118.5
N5—Ni2—O2	95.19 (17)	C15—C16—C17	119.0 (6)
N5—Ni2—N8	178.16 (19)	С15—С16—Н16	120.5
O2—Ni2—N8	85.50 (17)	С17—С16—Н16	120.5
N5—Ni2—S2	87.57 (13)	C18—C17—C16	118.5 (5)
O2—Ni2—S2	176.29 (13)	С18—С17—Н17	120.8
N8—Ni2—S2	91.81 (14)	С16—С17—Н17	120.8
C8—S1—Ni1	95.46 (18)	C19—C18—C17	119.5 (6)
C27—S2—Ni2	95.30 (18)	C19-C18-H18	120.2
C1—O1—Ni1	126.3 (4)	C17—C18—H18	120.2
C20—O2—Ni2	127.8 (4)	N4—C19—C18	122.7 (5)
C7—N1—N2	112.7 (4)	N4—C19—H19	118.7
C7—N1—Ni1	125.2 (4)	С18—С19—Н19	118.7
N2—N1—Ni1	122.1 (3)	O2—C20—C21	119.2 (7)
C8—N2—N1	112.6 (4)	O2—C20—C25	122.6 (8)
C8—N3—C9	129.6 (5)	C21—C20—C25	118.3 (8)
C8—N3—H3N	114 (4)	C22—C21—C20	121.2 (9)
C9—N3—H3N	116 (4)	C22—C21—H21	119.4
C19—N4—C15	117.4 (5)	C20-C21-H21	119.4
C19—N4—Ni1	123.1 (4)	C23—C22—C21	118.9 (9)
C15—N4—Ni1	119.1 (4)	С23—С22—Н22	120.5
C26—N5—N6	112.1 (4)	C21—C22—H22	120.5
C26—N5—Ni2	125.9 (4)	C24—C23—C22	121.9 (10)
N6—N5—Ni2	122.0 (3)	С24—С23—Н23	119.0
C27—N6—N5	111.5 (4)	С22—С23—Н23	119.0
C27—N7—C28	129.1 (5)	C23—C24—C25	121.0 (8)
C27—N7—H7N	115 (4)	C23—C24—H24	119.5
C28—N7—H7N	116 (4)	C25—C24—H24	119.5
C38—N8—C34	118.3 (5)	C20—C25—C24	118.6 (7)
C38—N8—Ni2	118.8 (4)	C20—C25—C26	123.1 (7)
C34—N8—Ni2	122.6 (4)	C24—C25—C26	118.3 (6)
O1—C1—C6	124.6 (7)	N5—C26—C25	125.3 (5)
O1—C1—C2	118.6 (8)	N5-C26-H26	117.4
C6—C1—C2	116.8 (8)	С25—С26—Н26	117.4
C3—C2—C1	121.2 (9)	N6—C27—N7	119.8 (5)
С3—С2—Н2	119.4	N6—C27—S2	123.5 (4)
С1—С2—Н2	119.4	N7—C27—S2	116.7 (4)
C2—C3—C4	123.8 (10)	C29—C28—N7	117.4 (8)
С2—С3—Н3	118.1	C29—C28—C33	118.2 (9)
С4—С3—Н3	118.1	N7—C28—C33	124.4 (8)
C5—C4—C3	115.8 (9)	C30—C29—C28	121.1 (9)
С5—С4—Н4	122.1	С30—С29—Н29	119.5
C3—C4—H4	122.1	С28—С29—Н29	119.5
C4—C5—C6	122.2 (8)	C29—C30—C31	120.7 (8)

С4—С5—Н5	118.9	С29—С30—Н30	119.7
С6—С5—Н5	118.9	C31—C30—H30	119.7
C1—C6—C5	120.1 (7)	C32—C31—C30	118.1 (8)
C1—C6—C7	121.3 (7)	C32—C31—H31	121.0
C5—C6—C7	118.6 (6)	C30—C31—H31	121.0
N1—C7—C6	126.6 (5)	C31—C32—C33	123.3 (9)
N1—C7—H7	116.7	C31—C32—H32	118.3
С6—С7—Н7	116.7	С33—С32—Н32	118.3
N2—C8—N3	120.3 (5)	C32—C33—C28	118.7 (9)
N2—C8—S1	122.4 (4)	С32—С33—Н33	120.7
N3—C8—S1	117.3 (4)	С28—С33—Н33	120.7
C14—C9—C10	118.5 (9)	N8—C34—C35	121.4 (5)
C14—C9—N3	122.8 (9)	N8—C34—H34	119.3
C10-C9-N3	118.7 (8)	С35—С34—Н34	119.3
C9—C10—C11	120.8 (9)	C36—C35—C34	119.7 (6)
С9—С10—Н10	119.6	С36—С35—Н35	120.1
C11—C10—H10	119.6	С34—С35—Н35	120.1
C12—C11—C10	121.2 (8)	C37—C36—C35	118.9 (5)
C12—C11—H11	119.4	С37—С36—Н36	120.6
C10—C11—H11	119.4	С35—С36—Н36	120.6
C11—C12—C13	118.7 (8)	C36—C37—C38	118.7 (6)
C11 - C12 - H12	120.7	C36—C37—H37	120.7
C_{13} C_{12} H_{12}	120.7	$C_{38} - C_{37} - H_{37}$	120.7
C_{12} C_{13} C_{14}	120.7	N8-C38-C37	122.8 (5)
C12 - C13 - H13	119.9	N8-C38-H38	118.6
C14—C13—H13	119.9	C_{37} C_{38} H_{38}	118.6
	2.0.(2)		0.2 (12)
NI = NII = SI = C8	-3.0(2)	C9-C10-C11-C12	-0.3(13)
N4—N11—S1—C8	1/8.9 (2)		-0.6 (13)
N5—Ni2—S2—C27	2.4 (2)	C11—C12—C13—C14	1.2 (14)
N8—Ni2—S2—C27	-179.4 (2)	C10—C9—C14—C13	0.2 (15)
N1—Ni1—O1—C1	-2.1 (6)	N3-C9-C14-C13	179.3 (8)
N4—Ni1—O1—C1	176.1 (6)	C12-C13-C14-C9	-1.1 (15)
N5—Ni2—O2—C20	1.4 (6)	C19—N4—C15—C16	-1.0 (8)
N8—Ni2—O2—C20	-176.9 (6)	Ni1—N4—C15—C16	172.3 (4)
01—Ni1—N1—C7	5.3 (5)	N4-C15-C16-C17	-1.3 (8)
S1—Ni1—N1—C7	-177.5 (5)	C15-C16-C17-C18	1.7 (8)
O1—Ni1—N1—N2	-174.8 (4)	C16—C17—C18—C19	0.0 (9)
S1—Ni1—N1—N2	2.3 (4)	C15—N4—C19—C18	2.9 (8)
C7—N1—N2—C8	179.8 (5)	Ni1-N4-C19-C18	-170.1 (4)
Ni1—N1—N2—C8	-0.1 (6)	C17-C18-C19-N4	-2.4 (8)
O1—Ni1—N4—C19	108.6 (4)	Ni2-02-C20-C21	-179.2 (7)
S1—Ni1—N4—C19	-68.5 (4)	Ni2-02-C20-C25	1.4 (12)
O1—Ni1—N4—C15	-64.3 (4)	O2—C20—C21—C22	-177.1 (9)
S1—Ni1—N4—C15	118.6 (4)	C25—C20—C21—C22	2.4 (15)
O2—Ni2—N5—C26	-3.7 (5)	C20—C21—C22—C23	-1.0 (17)
S2—Ni2—N5—C26	178.8 (5)	C21—C22—C23—C24	-1.2 (17)
O2—Ni2—N5—N6	175.2 (4)	C22—C23—C24—C25	2.0 (16)
S2—Ni2—N5—N6	-2 4 (4)	02 - C20 - C25 - C24	177.9 (8)
	2.1(1)		
C26—N5—N6—C27	180.0 (5)	C21—C20—C25—C24	-1.6 (12)

Ni2—N5—N6—C27	1.0 (6)	O2—C20—C25—C26	-2.8 (12)
O2—Ni2—N8—C38	64.2 (4)	C21—C20—C25—C26	177.8 (8)
S2—Ni2—N8—C38	-118.3 (4)	C23—C24—C25—C20	-0.6 (13)
O2—Ni2—N8—C34	-109.7 (4)	C23—C24—C25—C26	-179.9 (8)
S2—Ni2—N8—C34	67.8 (4)	N6-N5-C26-C25	-175.6 (5)
Ni1—O1—C1—C6	-2.1 (12)	Ni2—N5—C26—C25	3.4 (9)
Ni1—O1—C1—C2	179.2 (7)	C20-C25-C26-N5	0.3 (11)
O1—C1—C2—C3	175.1 (10)	C24—C25—C26—N5	179.6 (6)
C6—C1—C2—C3	-3.8 (16)	N5—N6—C27—N7	-176.3 (4)
C1—C2—C3—C4	2.9 (19)	N5—N6—C27—S2	1.7 (7)
C2—C3—C4—C5	-0.9 (17)	C28—N7—C27—N6	3.9 (10)
C3—C4—C5—C6	-0.1 (14)	C28—N7—C27—S2	-174.2 (6)
O1—C1—C6—C5	-175.9 (8)	Ni2—S2—C27—N6	-3.0 (5)
C2-C1-C6-C5	2.8 (12)	Ni2—S2—C27—N7	175.1 (4)
O1—C1—C6—C7	4.2 (12)	C27—N7—C28—C29	166.5 (7)
C2—C1—C6—C7	-177.0 (8)	C27—N7—C28—C33	-14.8 (13)
C4—C5—C6—C1	-1.0 (13)	N7-C28-C29-C30	178.1 (7)
C4—C5—C6—C7	178.9 (7)	C33—C28—C29—C30	-0.6 (13)
N2—N1—C7—C6	175.4 (5)	C28—C29—C30—C31	0.0 (13)
Ni1—N1—C7—C6	-4.7 (9)	C29—C30—C31—C32	0.1 (12)
C1—C6—C7—N1	-0.6 (11)	C30-C31-C32-C33	0.5 (14)
C5—C6—C7—N1	179.5 (6)	C31—C32—C33—C28	-1.2 (15)
N1—N2—C8—N3	175.1 (4)	C29—C28—C33—C32	1.2 (14)
N1—N2—C8—S1	-3.3 (7)	N7—C28—C33—C32	-177.5 (8)
C9—N3—C8—N2	-6.5 (10)	C38—N8—C34—C35	-4.6 (7)
C9—N3—C8—S1	171.9 (6)	Ni2—N8—C34—C35	169.4 (4)
Ni1—S1—C8—N2	4.3 (5)	N8—C34—C35—C36	3.5 (8)
Ni1—S1—C8—N3	-174.1 (4)	C34—C35—C36—C37	0.1 (9)
C8—N3—C9—C14	14.8 (13)	C35—C36—C37—C38	-2.4 (9)
C8—N3—C9—C10	-166.2 (7)	C34—N8—C38—C37	2.2 (8)
C14—C9—C10—C11	0.4 (14)	Ni2—N8—C38—C37	-172.0 (4)
N3—C9—C10—C11	-178.6 (7)	C36—C37—C38—N8	1.3 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3N····S2 ⁱ	0.86 (4)	2.77 (4)	3.605 (4)	163 (5)
N7—H7N…S1 ⁱⁱ	0.86 (4)	2.80 (2)	3.627 (4)	161 (5)

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) *x*+1, *y*-1, *z*.

